
Exercise 8 Stochastic Models of Manufacturing Systems 4T400, 16 June

1. In a zone picking system with single-segment routing, three different elements can be dis-
tinguished: the entrance/exit of the system, the conveyor, and the zones. These elements of
a single-segment zone picking system with two zones are shown in the figure below, where
we can distinguish one entrance/exit, two zones, labeled zone 1 and 2, and three conveyor
segments (connecting the entrance/exit and the zones).
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At the entrance of the system, a customer order is assigned to a new order tote. The tote
is released into the system as soon as it is allowed by the workload control mechanism.
This mechanism keeps the number of totes in the system xed over time (say K totes) and
only releases a new tote when a tote with all required order lines leaves the system. This
workload control mechanism prevents the conveyor to become the bottleneck of the system.
After release, a tote moves to the buffer of a requested zone (which is assumed to have ample
space). When the picking process has finished in a zone, the picker pushes the tote back
on the conveyor. The waiting time for a suciently large space on the conveyor is considered
to be negligible. The conveyor then transports the tote to the next zone to be visited (if
any). A weight check at the end of the conveyor loop ensures that the tote contains all the
required order lines. When the tote has visited all the required zones, it leaves the system
at the exit and a new order tote is immediately released into the system. We assume the
new totes are released one-by-one at an exponential rate µe. A fraction p1 of the new totes
only has to visit zone 1, a fraction p2 only needs to visit zone 2, and the rest needs to visit
both zones. The service times at zone i are exponential with rate µi. Each zone has a single
order-picker. The travel time on a conveyor segment is 1/µc seconds. We will assume that
1/µe = 5 seconds, 1/µc = 100 seconds, 1/µi = 18 seconds, and the release probabilities are
p1 = 1

2 , p2 = 1
4 .

(a) Model this single segment as a closed queueing network.

(b) What is the bottleneck station? So what is the throughput as K tends to infinity?

(c) Formulate a mean value algorithm to compute the throughput, mean flow time, mean
buffer contents at the zones, and the utilization of the order prickers, for workload
threshold K = 10, 50, 100.

(d) By re-allocating the items to the zones, it may be possible to obtain more load balance
between the two zones. Investigate the effect of load balancing on the performance of
the system.



(e) The assumption of exponential picking times is a rough approximation. We now formu-
late a more accurate model for the picking times. The zone or storage area for a picker
is shown in the figure below. The width of the storage area is 24 meter, the length is 36
meter, and the walking speed of the picker is 3 meter per second. The order totes are
waiting in the buffer, located at the starting point of the picker. Assume that the item
to be picked is randomly located in the storage area. The time to pick the item is 2
seconds. Compute the mean and standard deviation of the total picking time (walking
time plus time to pick the item).
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(f) Based on the above picking time model, adapt the mean value algorithm and compute
again the performance.

(g) Suppose the storage area can be re-designed. While keeping the area of square meters
the same, what are the optimal dimensions (in view of the system performance) and
why?

Answer:

(a) The segment can be modeled as a closed network with K circulating totes and 7 sta-
tions: entrance/exit e, two zones z1 and z2, and three pieces of conveyor c1, c2 and
c3. The stations e, z1 and z2 have a single exponential server, with rate µe, µ1 and
µ2 respectively. The conveyor pieces are modeled as infinite (or ample) servers with
constant service times 1/µc. The visit ratios are denoted by ve, v1, v2 and vc, and these
ratios are ve = vc = 1 and v1 = p1 + (1− p1 − p2) = 1− p2, v2 = 1− p1.



(b) The “relative” utilization of the entrance/exit e is ve/µe = 5, the relative utilizations of
z1 and z2 are 13 1

2 and 9. Hence, zone z1 is the bottleneck. As K tends to infinity, then
the throughput of zone z1 converges to µ1 totes per second, and thus the throughput
of the system becomes µ1ve/vi = 2/27 = 0.074 totes per second.

(c) For k = 1, . . . ,K totes, we have

E(Se(k)) = E(Le(k − 1))
1

µe
+

1

µe
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1
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,

E(Si(k)) = E(Li(k − 1))
1

µi
+

1

µi
, i = 1, 2,

Λe(k) =
kve

veE(Se(k)) + 3vcE(Sc(k)) + v1E(S1(k)) + v2E(S2(k))
,

Λc(k) =
vc
ve

Λe(k),

Λi(k) =
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ve

Λe(k), i = 1, 2,

E(Le(k)) = Λe(k)E(Se(k)),

E(Lc(k)) = Λc(k)E(Sc(k)),

E(Li(k)) = Λi(k)E(Si(k)), i = 1, 2,

starting with E(Le(0)) = E(Lc(0)) = E(L1(0)) = E(L2(0)) = 0. The results are listed
below.

K Λ(K) E(Se(K)) E(S1(K)) E(S2(K))
10 0.030 5.76 27.4 23.5
20 0.055 6.76 53.0 33.3
50 0.074 7.94 453 54.0

100 0.074 7.94 1353 54.0

Clearly, for K = 50 station z1 is already the bottleneck (so it does not make sense to
add more totes).

(d) Suppose that by reallocating items, we can achieve p1 = p2 = 3
8 , so v1 = v2 = 5

8 . Then
we get the following results.

K Λ(K) E(Se(K)) E(S1(K)) E(S2(K))
10 0.030 5.76 25.3 25.3
20 0.056 6.78 41.6 41.6
50 0.085 8.68 223 223

100 0.088 8.90 665 665

Hence, the effect of load balancing is an increase of 20% in achievable throughput.

(e) Let X and Y denote the horizontal and vertical distance to the item, so X = U(0, 12)
and Y = U(0, 36), with E(X) = 6, var(X) = 1

12 · 122 = 12, E(Y ) = 18 and var(Y ) =
108. The total picking time P (walking plus picking) is equal to

P =
2

3
(X + Y ) + 2,

so

E(P ) =
2

3
(E(X) + E(Y )) + 2 = 18 (sec),

and

var(P ) =
4

9
(var(X) + var(Y )) =

160

3
= 53.3 (sec2), σ(P ) = 7.3 (sce).



Clearly, the coefficient of variation cP = σ(P )/E(P ) = 0.41, which is less than 1 for
the exponential case.

(f) The approximate mean value algorithm (for general picking times) now read as follows.
For k = 1, . . . ,K totes, we have

E(Se(k)) = E(Le(k − 1))
1
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+
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Λe(k), ρi(k) = Λi(k)
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i = 1, 2,

E(Le(k)) = Λe(k)E(Se(k)),

E(Lc(k)) = Λc(k)E(Sc(k)),

E(Li(k)) = Λi(k)E(Si(k)), i = 1, 2,

starting with E(Le(0)) = E(Lc(0)) = E(L1(0)) = E(L2(0)) = 0, and where 1
µi

= E(P ),

E(Ri) = E(P )
2 (1+c2P ). For the original (unbalanced) situation we now get the following

results.

K Λ(K) E(Se(K)) E(S1(K)) E(S2(K))
10 0.030 5.77 23.5 21.2
20 0.057 6.84 39.9 27.4
50 0.075 8.04 446 40.4

100 0.074 7.97 1353 39.3

Note that the performance is slightly better (as it should be, since there is less variabil-
ity), but very close to that of (c). The above results are based on approximate mean
value analysis. The approximate throughput for K = 100 is slightly less than the one
for K = 50, which seems to be due to approximation error (since the exact throughput
increases in K).

(g) Let x be half the width and let y be the height, such that xy = 12 · 36 = 432. Then
X = U(0, x) and Y = U(0, y), and

E(X) =
1

2
x, var(X) =

1

12
x2, E(Y ) =

1

2
y, var(Y ) =
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12
y2.

Hence,

E(P ) =
1

3
(x+ y) + 2, var(P ) =

1

27
(x2 + y2).

Then it is readily verified (check!) that both E(P ) and var(P ) are minimized for
x = y =

√
432 = 20.8 meter, yielding E(P ) = 15.86 and var(P ) = 32 (so σ(P ) = 5.66).

For this total picking time and a balanced system, we get the following results (compare
with (d)).

K Λ(K) E(Se(K)) E(S1(K)) E(S2(K))
10 0.030 5.78 19.0 19.0
20 0.059 6.91 25.9 25.9
50 0.100 9.97 152 152

100 0.101 10.07 546 546


